
ar
X

iv
:c

on
d-

m
at

/0
30

85
54

v3
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  7
 J

an
 2

00
4

Noise reduction in chaotic time series by a local projection with nonlinear constraints

Krzysztof Urbanowicz∗ and Janusz A. Ho lyst†

Faculty of Physics and Center of Excellence Complex Systems Research

Warsaw University of Technology

Koszykowa 75, PL–00-662 Warsaw, Poland

Thomas Stemler and Hartmut Benner
Institute of Solid-State Physics

Darmstadt University of Technology

Hochschulstr.6, D-64289 Darmstadt, Germany

(Dated: February 2, 2008)

On the basis of a local-projective (LP) approach we develop a method of noise reduction in time
series that makes use of nonlinear constraints appearing due to the deterministic character of the
underlying dynamical system. The Delaunay triangulation approach is used to find the optimal
nearest neighboring points in time series. The efficiency of our method is comparable to standard
LP methods but our method is more robust to the input parameter estimation. The approach has
been successfully applied for separating a signal from noise in the chaotic Henon and Lorenz models
as well as for noisy experimental data obtained from an electronic Chua circuit. The method works
properly for a mixture of additive and dynamical noise and can be used for the noise-level detection.
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I. INTRODUCTION

It is common that observed data are contaminated by
noise (for a review of methods of nonlinear time series
analysis see [1, 2, 3]). The presence of noise can sub-
stantially affect such system parameters as dimension,
entropy or Lyapunov exponents [4]. In fact noise can
completely obscure or even destroy the fractal structure
of a chaotic attractor [5] and even 2% of noise can make a
dimension calculation misleading [6]. It follows that both
from the theoretical as well as from the practical point of
view it is desirable to reduce the noise level. Thanks to
noise reduction [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
it is possible e.g. to restore the hidden structure of an
attractor which is smeared out by noise, as well as to
improve the quality of predictions.

Every method of noise reduction assumes that it is pos-
sible to distinguish between noise and a clean signal on
the basis of some objective criteria. Conventional meth-
ods such as linear filters use a power spectrum for this
purpose. Low pass filters assume that a clean signal has
some typical low frequency, respectively it is true for high
pass filters. It follows that these methods are convenient
for a regular source which generates a periodic or a quasi-
periodic signal. In the case of chaotic signals linear filters
cannot be used for noise reduction without a substantial
disturbance of the clean signal. The reason is the broad-
band spectrum of chaotic signals. It follows that for
chaotic systems we make use of another generic feature of
dissipative motion located on attractors that are smooth
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submanifolds of an admissible phase space. As results
corresponding state vectors reconstructed from time de-
lay variables are limited to geometric objects that can be
locally linearized. This fact is a common background of
all local projective (LP) methods of noise reduction.

Besides the LP approach there are also noise reduction
methods that approximate an unknown equation of mo-
tion and use it to find corrections to state vectors. Such
methods make use of neural networks [11] or a genetic
programming [12] and one has to assume some basis func-
tions e.g. radial basis functions [19] to reconstruct the
equation of motion. Another group of methods are mod-
ified linear filters e.g. the Wiener filter [13], the Kalman
filter [14], or methods based on wavelet analysis [15]. Ap-
plications of these methods are limited to systems with
large sampling frequencies, and they are confined to the
neighborhood of every point in phase space.

The method described in this paper can be considered
as an extension of LP methods by taking into account
constraints that occur due to the local linearization of the
equation of motion of the system. We call our method
the local projection with nonlinear constraints (LPNC).

The paper is organized as follows. In the following
section we shall present the general background of LP
methods. The LPNC method is introduced in Sec. III
and compared with LP methods in Sec. IV. In Sec. V we
present methods how to find the nearest neighborhood,
and examples of noise reduction and estimation are in-
troduced in Secs. VI and VII. In the appendix A one can
find the multidimensional generalization of the solution
presented in Sec. III.

http://arXiv.org/abs/cond-mat/0308554v3
mailto:urbanow@if.pw.edu.pl
mailto:jholyst@if.pw.edu.pl
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II. LOCAL PROJECTIVE METHODS OF NOISE
REDUCTION

Let us consider a scalar time series {x̃n}, n = 1, 2, ..., N
corresponding to an experimentally accessible component
of the system trajectory. We assume that in the presence
of measurement noise instead of the clean time series x̃n

we observe a noisy series xn: xn = x̃n + ηn where ηn is
the noise variable. The aim of noise reduction methods is
to estimate the set {x̃n} from the observed noisy data set
{xn}, i.e. to find corrections δxn such that xn+δxn ≈ x̃n.
The corrections δxn can be estimated on the assumption
that x̃n belongs to a clean deterministic trajectory. Let
us create vectors of the system state x̃n using the Takens
Theorem [2] x̃n = {x̃n, x̃n−τ , ..., x̃n−(d−1)τ}, where d is
the embedding dimension, and τ is the embedding delay
that further will be just 1. Now the simple approach is to
use a linear approximation for the nearest neighborhood
X̃NN

n of a vector x̃n and then to estimate an unknown
equation of motion in the embedded space by a linear fit:
x̃n+1 = Ax̃n + b. The matrix A is the corresponding
Jacobi matrix and b is a constant vector.

In LP methods the local linearity of the system dy-
namics plays the crucial role. The unknown equa-
tion of motion of a deterministic systems x̃n+1 =
F (x̃n, x̃n−1, . . . , x̃n−d+1) is equivalent to the presence of
a constraint H (x̃n+1, x̃n, . . . , x̃n−d+1) = 0. If the em-
bedding dimension d is larger than the dimension of the
attractor then Q constraints appear:

H(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 and q = 1, . . . , Q ≤ d

(1)
where Q depends on the rounded up dimension da of
the attractor, Q = d + 1 − da. Since we apply a linear
approximation for vectors x̃i ∈ X̃NN

n the constraints (1)
can be written as

H(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) =

d−Q
∑

j=1

a
q,(n)
j x̃i−j+1−q + bq,(n) − x̃i+1−q = 0, (2)

where a
q,(n)
j and bq,(n) are elements of A and b respec-

tively. The main problem of LP methods is to find a
tangent subspace determined by the linear constraints

H
(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0 and to perform an ap-

propriate projection on this subspace. Different LP ap-
proaches make use of different projecting methods, how-
ever tangent subspaces are found in the same manner by
all methods, i.e. the subspace should fulfill the condition

(2) and the condition
〈

|xi − x̃i|
2
〉

= min.

A. Cawley-Hsu-Sauer method (CHS)

The method makes use of a perpendicular projec-
tion on a subspace corresponding to the constraints (2)

[16, 17]. Since there are several constraints (2) and the
same data will occur in several Takens vectors xn there
are many possible corrections δxn,q to the same observed
data xn. In the CHS method one makes a compromise
between different corrections by taking the average

x̃n = xn + α

Q
∑

q=1

δxn,q (3)

where

δxn,q = −H(n)
q (xn+1, xn, . . . , xn−d+1)

▽nH
(n)
q

∥

∥

∥
▽nH

(n)
q

∥

∥

∥

2 (4)

is the correction of xn obtained due to the constraint

H
(n)
q (x̃n+1, x̃n, . . . , x̃n−d+1) = 0. α is some constant 0 <

α < 1 and ▽nH
(n)
q = ▽H

(n)
q (xn+1, xn, . . . , xn−d+1) is

the gradient of the constraint function.

B. Schreiber-Grassberger method (SG)

Instead of the perpendicular projection on the sub-
space defined by (2) one can perform a projection by
correcting only one variable [5]. If we choose xn+1−r as
the corrected variable where r ≈ d/2 then the corrections
are

x̃n = xn − α
H

(n)
s (xn+1+r , xn+r, . . . , xn−d+1+r)

∂H
(n)
s (xn+1+r , xn+r, . . . , xn−d+1+r) /∂xn

(5)

where s ≈ Q
2 . The approach can be justified as follows.

If the largest (unstable) Lyapunov exponent is λu > 0
and the smallest (stable) Lyapunov exponent is λs < 0

we can write ∂xn+r

∂xn
∼ eλur and

∂xn−d+1+r

∂xn
∼ e|λs|(r−d+1).

If λu ≈ |λs| then the highest precision for determining
the denominator of the rhs of (5) is usually obtained for
r = d/2:

d/2
∑

l=0

∣

∣

∣
eλul + e|λs|l

∣

∣

∣
|∆xn| =

min
r=0,...,d

{

r
∑

l=0

∣

∣eλul
∣

∣ |∆xn| +
d−r
∑

l=0

∣

∣

∣
e|λs|l

∣

∣

∣
|∆xn|

}

, (6)

where ∆xn is the error connected with the variable xn.

C. The optimal method of local projection
(GHKSS)

In the GHKSS method [18, 20] developed by Grass-
berger et.al. one looks for a minimization functional
that fulfills the linear constraints (2) by correspond-
ing corrections received in a one-step procedure. The
constraints (2) can be written in the equivalent form
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(

aq,(n) · ỹn

)

+ bq,(n) = 0 where a new vector ỹn =
{x̃n+1, x̃n, . . . , x̃n−d+1} is introduced, the dimension of
which is larger by one than the dimension of the vector
xn. Vectors aq,(n) should be linearly independent and
appropriately normalized, so that multiple corrections of
the variables are eliminated, i.e. aq,(n) · Paq′,(n) = δqq′

where P is the matrix describing the metric of the sys-
tem. Let YNN

n be a set corresponding to the nearest
neighborhood of the vector yn. Minimizing the func-
tional

∑

k

δxk · P−1δxk for
{

k : yk ∈ YNN
n

}

under the

above conditions we get a system of coupled equations.
The next step is to consider all vectors of YNN

n and to

calculate the average ξ
(n)
i = 1

|YNN
n

|
∑

k

xk+i, i = 0, 1, . . . , d

as well as corresponding (d + 1)× (d + 1) covariance ma-
trix

C
(n)
ij =

1

|YNN
n |

∑

k

xk+ixk+j − ξ
(n)
i ξ

(n)
j , (7)

here
∣

∣YNN
n

∣

∣ means the number of elements in the set.

Defining Ri = 1√
Pi

and Γ
(n)
ij = RiC

(n)
ij Rj one can find Q

orthonormal eigenvectors of the matrix Γ(n) correspond-
ing to its smallest eigenvalues eq,(n) for q = 1, . . . , Q.

Let the matrix Π
(n)
ij =

Q
∑

q=1
e

q,(n)
i e

q,(n)
j define a subspace

spanned by the eigenvectors eq,(n). Now the corrections
to the observed signal can be written as follows

δxn+i =
1

Ri

d
∑

j=0

Π
(n)
ij Rj

(

ξ
(n)
j − xn+j

)

. (8)

We see that the GHKSS method does not employ mul-
tiple corrections resulting from constraints (2), but only
performs a smaller number of corrections following the
multiple occurrence of the same variable xn in various
vectors yi : xn ∈ yi.

The solution (8) is a generalization of the CHS and SG
methods. The main difference between the CHS method
and the GHKSS method is in the subspace of projection.
While a perpendicular projection of points is used in the
first case, projection is on a tangent subspace defined by
the matrix P in the second case. The matrix P should be
diagonal and such that the first and the last component
of the vector yn have only small weights e.g. :

P =

{

0.001 i=0,d,

1 otherwise.
(9)

The efficiency of noise reduction methods can be mea-
sured by the gain parameter, defined as

G = 10 log

(

σ2
noise

σ2
red

)

(10)

where σ2
noise =

〈

(xn − x̃n)
2
〉

is the variance of added

noise and σ2
red is the variance of noise left after noise

reduction. The last value is calculated as the square of
the distance between the vector of noise-reduced data
and the vector of clean data divided by the dimension of
these vectors. The definition of the gain presumes the
knowledge of the clean data X̃n = {x̃n}.

The noise level parameter N can be defined as the
ratio of standard noise deviation σnoise to standard data
deviation σdata

N =
σnoise

σdata
. (11)

III. THE PRINCIPLE OF LPNC METHOD

The LP methods described in the previous section
make use of linear constraints that appear due to lin-
ear approximation of the system dynamics. Such a linear
approximation has only a local character and correspond-
ing coefficients depend, in fact, on the position in phase
space. If we assume that the nearest neighborhood of ev-
ery point x̃n is characterized by the same coefficients then
nonlinear constraints appear that can be used for recon-
struction of the unknown deterministic trajectory. The
basic advantage of the local projection with nonlinear con-

straints (LPNC) method introduced here as compared to
LP methods is its smaller sensitivity to the input param-
eters estimation. A weak point of the LPNC method is
its slower convergence rate with respect to the standard
LP approach. The LPNC algorithm can be accelerated
but at the cost of decreasing the gain parameter. Like
other LP methods the LPNC method belongs to the it-
erative approaches. A single iteration provides only a
partial noise reduction and a corrected data set serves as
an input for the next iteration.

For the one-dimensional case the Jacobi matrix A

and the additive vector b describing the locally lin-
earized dynamics at point x̃n reduce to scalar coeffi-
cients A = a1 (x̃n), b = b (x̃n), and the linearized equa-
tion of motion at x̃n reads x̃n+1 = a1 (x̃n) x̃n + b (x̃n).

Let us consider the nearest neighborhood X̃NN
n of x̃n.

We assume that the set X̃NN
n consists of three points

{

x̃n, x̃k, x̃j ∈ X̃NN
n

}

which are so close to each other that

their locally linearized dynamics can be approximately
described by the same pair of coefficients A = a1 (x̃n),
b = b (x̃n). When we write down three linear equations
of motion for x̃n, x̃k, x̃j

x̃n+1 = a1 (x̃n) x̃n + b (x̃n)

x̃k+1 = a1 (x̃n) x̃k + b (x̃n)

x̃j+1 = a1 (x̃n) x̃j + b (x̃n) (12)

the coefficients a1(x̃n) and b(x̃n) can be eliminated. After
elimination we get a constraint that has to be fulfilled by
the system variables for consistency reasons.

G
(

X̃NN
n

)

≡ x̃n (x̃k+1 − x̃j+1) +

x̃k (x̃j+1 − x̃n+1) + x̃j (x̃n+1 − x̃k+1) = 0. (13)
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In the case of a higher dimension d > 1 we have three
equations of motions but the number of unknown con-
stants is larger than two, i.e.

x̃n+1 =

d
∑

i=1

ai (x̃n) x̃n−i+1 + b (x̃n)

x̃k+1 =

d
∑

i=1

ai (x̃n) x̃k−i+1 + b (x̃n)

x̃j+1 =

d
∑

i=1

ai (x̃n) x̃j−i+1 + b (x̃n) , (14)

where ai(x̃n) are elements of the first row of Jacobi ma-
trix and b(x̃n) is a constant. The corresponding con-
straint Gd for higher dimensional case is as follows

Gd
(

X̃NN
n

)

≡

(

d
∑

i=1

aixn−i+1

)

(x̃k+1 − x̃j+1) +

(

d
∑

i=1

aixk−i+1

)

(x̃j+1 − x̃n+1) +

(

d
∑

i=1

aixj−i+1

)

(x̃n+1 − x̃k+1) = 0 (15)

The extended constraints and the corresponding calcu-
lations that are valid for all rows of Jacobi matrix A

are presented in the appendix A. The condition (13)
and (15) should be fulfilled for every point x̃n and its

nearest neighborhood X̃NN
n . Similarly as in LP methods

these constraints are ensured in the LPNC approach by
application of the method of Lagrange multipliers to an
appropriate cost function. Since we expect that correc-
tions to noisy data should be as small as possible, the
cost function can be assumed to be the sum of squared

corrections S =
∑N

s=1 (δxs)2.

It follows that we are looking for the minimum of the
functional

S̃ =

N
∑

n=1

(δxn)2 +

N
∑

n=1

λnGd
(

X̃NN
n

)

= min. (16)

After finding zero points of 2N partial derivatives one
gets 2N equations with 2N unknown variables δxn and
λn. However, in such a case the derivatives of the func-
tional (16) are nonlinear functions of these variables. For
simplicity of computing we are interested to pose our
problem in such a way that linear equations appear which
can be solved by standard matrix algebra. To under-
stand the role of nonlinearity let us write the constraint

G
(

X̃NN
n

)

in such a way that explicit dependence on the

unknown variables is seen (the corresponding equations

for Gd(X̃NN
n ) have a similar form)

G
(

X̃NN
n

)

∼= G
(

XNN
n ,Xn+1

)

+ G (δXn,Xn+1) +

G
(

XNN
n , δXn+1

)

+ G (δXn, δXn+1) . (17)
Here we introduced the following notation

G
(

XNN
n ,Xn+1

)

≡ xn (xk+1 − xj+1) + xk (xj+1 − xn+1) + xj (xn+1 − xk+1)

G (δXn,Xn+1) ≡ δxn (xk+1 − xj+1) + δxk (xj+1 − xn+1) + δxj (xn+1 − xk+1)

G
(

XNN
n , δXn+1

)

≡ xn (δxk+1 − δxj+1) + xk (δxj+1 − δxn+1) + xj (δxn+1 − δxk+1)

G (δXn, δXn+1) ≡ δxn (δxk+1 − δxj+1) + δxk (δxj+1 − δxn+1) + δxj (δxn+1 − δxk+1) , (18)

where XNN
n = {xn, xk, xj}, Xn+1 =

{xn+1, xk+1, xj+1}, δXn = {δxn, δxk, δxj},
δXn+1 = {δxn+1, δxk+1, δxj+1} and xk, xj are
the near neighbors of xn. Indices are defined as
{

n, j, k : xn, xk, xj ∈ XNN
n

}

. Note that elements of the
set Xn+1 are not necessarily near neighbors to each
other.

The approximation we use in (17) follows from the

fact that in general the nearest neighborhood X̃NN
n does

not include the same indices as the nearest neighborhood
XNN

n , i.e.
{

k : x̃k ∈ X̃NN
n

}

6=
{

j : xj ∈ XNN
n

}

. (19)

In the case of not correlated noise and under the assump-
tion that the introduced corrections completely reduce

the noise effect δxs = −ηs (∀s=1,...,N ) one can neglect
the nonlinear terms in Eqs. (18) i.e.

G (δXn, δXn+1) ∼= 0 (∀n=1,...,N ). (20)

In the equation (20) we use the fact that 〈ηi〉 = 0 and
〈ηiηj〉 ∼ δij .

Taking into account the approximation (20) one can
write the following linear equation for the problem (16)

M · δX = B, (21)

where M is a matrix containing constant ele-
ments, B is a constant vector, and δXT =
{δx1, δx2, . . . , δxN , λ1, λ2, . . . , λN} is a vector of depen-
dent variables (T - transposition). In practice it is very
difficult or even impossible to find the solution of the
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equation (21) for large N. First,it is time consuming to
solve a linear equation with a matrix 2N × 2N matrix
for N > 1000. Second, when M becomes singular the
estimation error of the inverse matrix M−1 is very large.
Third, we cannot always find the true near neighbors (the

set X̃NN
n ) from the noisy data {xi}. Taking into account

the above reasons it is useful to replace the global mini-
mization problem (16) by N local minimization problems
related to the nearest neighborhood XNN

n . The corre-
sponding local functionals to be minimized are

S̃NN
n =

∑

s

(δxs)
2

+ λnGd
(

XNN
n

)

= min

(∀n=1,...,N) where
{

s : xs ∈ XNN
n or xs ∈ Xn+1 or . . . xs ∈ Xn−d+1

}

.(22)

We can consider the minimization problem (22) as a cer-
tain approximation of (16). Functionals (22) are linked
to each other due to the fact that the same variable δxn

appears in 6·d different minimization problems (22). The
global problem (16) is equivalent to Eq. (21) with 2N un-
known variables that should be found single-time. The
problem (22) is equivalent to a system of coupled equa-
tions that should be solved several times and as a re-
sult one gets an approximate global solution. Writing
Eq. (22) in the linear form i.e. calculating zero sites of
corresponding derivatives and using Eq. (20) one gets N
linear equations as follows

Mn · δXλ
n = Bn (∀n=1,...,N ), (23)

where
(

δXλ
n

)T
= {δxn, δxk, δxj , δxn+1, δxk+1, δxj+1, λn}.

The matrices Mn corresponding to (22) avoid the dis-
advantages of (21), i.e. they are not singular, their
dimension is smaller and they do not substantially
depend on the initial approximation of near neighbors.
The matrix Mn for one-dimensional case is given by

Mn =



















2 0 0 0 0 0 xk+1 − xj+1

0 2 0 0 0 0 xj+1 − xn+1

0 0 2 0 0 0 xn+1 − xk+1

0 0 0 2 0 0 xj − xk

0 0 0 0 2 0 xn − xj

0 0 0 0 0 2 xk − xn

xk+1 − xj+1 xj+1 − xn+1 xn+1 − xk+1 xj − xk xn − xj xk − xn 0



















(24)

Vector Bn has the form BT
n =

{

0, 0, 0, 0, 0, 0,−G
(

XNN
n ,Xn+1

)}

.

IV. COMPARING LPNC METHOD TO LOCAL
PROJECTION METHODS

Let us illustrate the LPNC method by taking into
account the cost functional (22) (it will be written as
SLPNC)

SLPNC =
∑

i

δx2
i + λ[x̃n (x̃k+1 − x̃j+1) +

x̃k (x̃j+1 − x̃n+1) + x̃j (x̃n+1 − x̃k+1)] = min . (25)

The corresponding cost function SGHKSS that is used in
the standard local projection method e.g. in the GHKSS
method [18] is

SGHKSS =
∑

i

δx2
i + λ1 (x̃na + b − x̃n+1) +

λ2 (x̃ja + b − x̃j+1) + λ3 (x̃ka + b − x̃k+1) = min . (26)

If we were in the position to find exact solutions for the
minimization problems (25) and (26) then both results

would be the same since (25) can be obtained from (26)
after elimination of the parameters a and b.

In both cases the variables
{

x̃n, x̃k, x̃j ∈ X̃NN
n

}

be-

long to the nearest neighborhood of the variable x̃n. The

index i =
{

k, k + p : x̃k ∈ X̃NN
n

}

runs through all in-

dices of the variables appearing in (25) and (26) while

the variable x̃k+p =
{

x̃l : x̃l−p ∈ X̃NN
n

}

corresponds to

the p-iterate of x̃k. Parameters a and b can be calculated
from a linearized form of the equations of motion at the
point x̃n.

In practice the minimization problems SLPNC and
SGHKSS are not equivalent because in both cases dif-
ferent approximations are used. These differences are:
(i) Eq. (25) is nonlinear against corrections δxi. In this
case the approximation consists in a linearization. (ii)
For Eq. (26) the exact values of the parameters a and
b are unknown. The approximation means that a and b
are estimated from noisy data.

Fig. 1 and 2 present a comparison between results re-
ceived by the GHKSS and LPNC methods. Fig. 1 shows
that the gain parameter G depends on the number of
neighbors, which is an input parameter of both methods.
One can see that for LPNC method the gain parameter is
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FIG. 1: The plot of the gain parameter G versus number of
iterations of the GHKSS method (squares) and LPNC method
(triangles). Lorenz system N = 78%, N = 1000.
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FIG. 2: The plot of the gain parameter G versus number of
neighbors of the GHKSS method (squares) and LPNC method
(triangles). Lorenz system N = 78%, N = 1000.

more robust to changes of the number of neighbors than
for the GHKSS method. In Fig. 2 the dependence of the
gain parameter on the number of iteration steps of the
methods is shown. One can see that LPNC method fin-
ished reduction at the maximal efficiency what is not the
case of GHKSS method, so the former method is easier
to use since it does not need estimation of the iteration
number.

If we consider uniformly distributed stochastic vari-
ables (see Fig. 3) the LPNC method reduces the noise
very well, and as a result all data are represented as a
neighborhood of a point attractor (see Fig. 4) while a
complete noise reduction would correspond to a phase
portrait consisting of a single point. In fact, for the case
considered we observed for the LPNC method a noise
reduction of about 96% of data variance.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 

 

X
n+

1

X
n

FIG. 3: The random data from uniform distribution
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FIG. 4: The random data shown in the Fig. 3 after noise
reduction with the LPNC method

V. THE NEAREST NEIGHBORHOOD
ASSESSMENT

The LP methods are local. It follows that features of
the nearest neighborhood XNN

n of every point xn in the
phase space play an important role. Usually the near-
est neighborhood is estimated by the smallest distance
approach that makes use of the standard Euclidian ge-
ometry. We have found, however, that our LPNC method
works much better when the Delaunay triangulation ap-
proach [21] is applied for the nearest neighborhood esti-
mation.

A. The smallest distance approach (SD)

In the smallest distance approach the Euclidian met-
ric is used, i.e. first the distance between every pair of
points in the Takens embedded space is calculated as

di,j =

√

(xi − xj)2 + . . . +
(

xi−(d−1)τ − xj−(d−1)τ

)2
and
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FIG. 5: Delaunay triangulation for a set of nine points in
a two-dimensional space. The near neighbors are connected
by bold lines. Sets T (xi), i = 1, 2, . . . , 9 are limited by thin
lines.

then the nearest neighborhood XNN
n of a point xn is de-

fined as a set of ν points fulfilling the relation

{

xj ∈ XNN
n , ∀kxk /∈ XNN

n : dn,j ≤ dn,k

}

. (27)

Let us stress that this definition depends on the chosen
value of the ν parameter. i.e. on the assumed number of
near neighbors, ν = 2, 3, . . ..

B. The Delaunay triangulation approach (DT)

To find the nearest neighborhood relations for the
LPNC method we have used the Delaunay triangulation
[21]. In general the triangulation of any set of points
X = {xi} ∈ R

d is a collection of d-dimensional sim-
plices with disjoint interiors and vertices chosen from X.
There are many triangulation of the same set of points
X. One of the best known is the Delaunay triangulation
(see Fig. 5). Let T (xn) be a part of the space R

d that
contains all points that are closer to xn than any other
point xj from the set X

T (xn) =
{

z ∈ R
d,xj ∈ X : ∀j 6=n ‖z − xn‖ ≤ ‖z − xj‖

}

.
(28)

If mi,j = (xi + xj) /2 belongs to both sets T (xi) and
T (xj) then by definition the point xj is the nearest neigh-
bor of xi received due to the Delaunay triangulation. By
the above definition every point xn belongs to its nearest
neighborhood xn ∈ XNN

n .
In practice the Delaunay approach can be performed

as follows. A pair of points xn and xj are near neighbors
provided that there are no other points xk (k 6= j, n)
belonging to the hypersphere centered at the point mn,j

and of the radius rn,j = ‖xn − xj‖ /2.
In Fig. 6 two cases are presented when in the two-

dimensional space a) the point xj is not the nearest
neighbor of xn and b) the point xj is the nearest neighbor
of xn.

 

nx  

jx  

jn,m  

a) 
nx  

jx  

jn,m  

b) 

FIG. 6: Illustration of nearest neighborhood search by DT
approach a) xj and xn are not near neighbors. b) xj and xn

are near neighbors

.

-2 -1 0 1 2

-2

-1

0

1

2

 

 

X
n+

1

X
n

FIG. 7: Chaotic Henon map without noise

The DT method has the advantage that triangles ap-
pearing due to connections of near neighbors are almost
equiangular (see Fig. 5). This property is the main reason
for using the DT method in search of the near neighbors.
The disadvantage of this method is a slowing down of
numerical calculations.

VI. EXAMPLES OF NOISE REDUCTIONS

The LPNC method has been applied to three systems:
the Henon map, the Lorenz model [22] and the Chua cir-
cuit [23, 24, 25]. Figures 7 - 9 present the chaotic Henon
map in the absence and in the presence of measurement
noise as well as a result of the noise reduction. Table I
presents the values of the gain parameter for the Henon
map and for the Lorenz system.

To verify our method in a real experiment we have
performed the analysis of data generated by a nonlin-
ear electronic circuit. The Chua circuit in the chaotic
regime [23, 24] has been used and we have added a mea-
surement noise to the outcoming signal. The noise (white
and Gaussian) came from an electronic noise generator.
Figures 10 - 12 show a clean signal coming from this
circuit, the signal generated by Chua circuit with mea-
surement noise (N = 96.5%) and the same signal after
the noise reduction with the LPNC method (G = 6.38).
Table II presents values of the G parameter and the per-
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FIG. 8: Chaotic Henon map with a measurement noise N =
69%. Note the difference in scale.
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FIG. 9: Chaotic Henon map with a measurement noise after
noise reduction with the LPNC method, G = 4.3

centage of eliminated noise for several values of the noise
level in the Chua circuit.

All the above applications of the LPNC method con-
sider the case of measurement noise that has been added
to the signal in numerical or electronic experiments.
However, our LPNC method can also be applied to dy-
namical noise i.e to the noise which in experiments is in-
cluded in the equations of motion [26]. In such a case one

TABLE I: Results of noise reduction by the LPNC method
for the Henon map and Lorenz model.

System N G percent. of eliminated noise
Henon N = 1000 10% 9.58 89%
Henon N = 3000 10% 10.04 91%
Henon N = 1000 66% 5.08 69%
Lorenz N = 1000 78% 5.85 74%
Lorenz N = 3000 76% 6.02 75%
Lorenz N = 1000 34% 7.21 81%
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FIG. 10: The stroboscopic map corresponding to a clean
trajectory in the Chua circuit.
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FIG. 11: The stroboscopic map received from the Chua cir-
cuit in the presence of a measurement noise N = 96.5%. Note
the difference in scale.
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FIG. 12: The stroboscopic map received after the noise re-
duction by the LPNC method applied to data presented at
Fig. 11.
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TABLE II: Results of noise reduction by the LPNC method
for the Chua circuit with a measurement noise (N = 3000).

N G percent. of eliminated noise
24.9% 5.4 71%
28.3% 4.9 68%
46.1% 7.0 80%
73.7% 4.81 67%
90.6% 7.4 82%
96.5% 6.4 77%
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FIG. 13: Stroboscopic map received from the Chua circuit in
the presence of a mixture of a measurement and dynamical
noise N ≈ 22%.

cannot compare the noisy data with the clean trajectory
since the latter one does not exist anymore, and there
are only ǫ-shadowed trajectories [8] that can be approxi-
mated by means of the LPNC method. Figure 13 shows a
measured signal generated by a Chua circuit where a mix-
ture of measurement noise and dynamical noise occurs.
Figure 14 shows the result of noise reduction applied to
such a signal.

VII. NOISE LEVEL ESTIMATION BY LPNC
METHOD

The LPNC method introduced in the previous section
can be used to quantify the noise level of data. The noise
level, i.e. the standard deviation in noisy time series, may
be approximated as the Euclidian distance between the
vectors {xi} and {x̄i} representing the time series before
and after noise reduction [16]

σ̃noise ≈

√

√

√

√

1

N

N
∑

i=1

(xi − x̄i)
2
. (29)

The main disadvantage of the LPNC method used for
the noise level estimation is its small rate of conver-
gence with respect to other known methods [4, 27, 28, 29]
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FIG. 14: Stroboscopic map received after noise reduction by
the LPNC method applied to data presented at Fig. 13

TABLE III: Noise level estimated by the LPNC method for
the Chua circuit with measurement noise (N = 3000).

N σnoise [mV] σ̃noise [mV]
0% 0 5.5

3.1% 30.4 28.9
6.2% 60.8 53.7
12.3% 121.7 110
24.9% 243.4 235
28.3% 304 305
46.1% 486 454
73.7% 973 938
90.6% 1520 1375
96.5% 2120 1844

and the fact that the method can be used only for low-
dimensional systems. On the other hand the LPNC
method can be applied for estimation of any noise level
including a large one. In Table III we have presented the
estimated noise level σ̃noise for the Chua circuit.

VIII. CONCLUSIONS

In conclusion we have developed a method of noise
reduction that makes use of nonlinear constraints which
occur in a natural way due to the linearization of a deter-
ministic system trajectory in the nearest neighborhood of
every point in the phase space. This neighborhood has
been determined by Delaunay triangulation. The method
has been applied to data from the Henon map, Lorenz
model and electronic Chua circuit contaminated by mea-
surement (additive) noise. The efficiency of our method
is comparable to that of standard LP methods but it is
more robust to input parameter adjustment.
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APPENDIX A: MULTIDIMENSIONAL VERSION
OF LPNC METHOD

In Sec. III the LPNC method has been presented for
one-dimensional systems. Here we show the generaliza-
tion of this approach for d-dimensional dynamics. For
one-dimensional problems the Jacobi matrix of the sys-
tem does not appear explicitly in our method. For higher
dimensional models the corresponding Jacobian A has to
be calculated but we manage to minimalize errors occur-
ring by its estimation. The linearized equation of motion
for vectors from the nearest neighborhood X̃NN

n of a vec-
tor x̃n can be written in the form

x̃n+1 = A · x̃n + b. (A1)

In such a case one needs three vectors x̃n, x̃k, x̃j ∈ X̃NN
n

to write constraints corresponding to Eq. (13). In com-
parison with to the one-dimensional case the number of

near neighbors i.e. the number of points in the set X̃NN
n

must be larger to allow a unique estimation of the Jaco-
bian A. We assume that the Jacobi matrix can be ap-
proximately received by minimalization of the following
cost functional

∑

s

(am1xs + am2xs−τ + . . .

. . . + amdxs−(d−1)τ − xs+1−mτ )2 = min

(∀m=1,...,d) and
{

s : xs ∈ XNN
n

}

, (A2)

where aij = [A]ij . By analogy with Eq. (13) we introduce
the follow

Gd
m

(

X̃NN
n

)

≡ am1G
(

X̃NN
n , X̃n+1−mτ

)

+

am2G
(

X̃n−τ , X̃n+1−mτ

)

+ . . .

. . . + amdG
(

X̃n−(d−1)τ , X̃n+1−mτ

)

= 0

(∀m=1,...,d), (A3)

where we used the notation corresponding to equa-
tion (17) i.e.

G
(

XNN
n ,Xn+l

)

= xn (xk+l − xj+l) + xk (xj+l − xn+l) + xj (xn+l − xk+l)

G (Xn−s,Xn+l) = xn−s (xk+l − xj+l) + xk−s (xj+l − xn+l) + xj−s (xn+l − xk+l) , (A4)

Xn+s = {xn+s,xk+s,xj+s} (∀s=0,±1,±2,...) where
{

n, j, k : xn,xk,xj ∈ XNN
n

}

. Since the clean trajectory
is not known thus in the Eq. (A3) the observed variables
XNN

n , Xn+1−mτ etc. are used.

In such a way the equation (20) can be written in a
more general way as

d
∑

l=1

amlG
(

δXn−(l−1)τ , δXn+1−mτ

)

∼= 0

(∀n=1,...,N , ∀m=1,...,d) (A5)

where we use

G (δXn−s, δXn+l) = δxn−s (δxk+l − δxj+l)

+δxk−s (δxj+l − δxn+l) + δxj−s (δxn+l − δxk+l) (A6)

δXn+s = {δxn+s, δxk+s, δxj+s} (∀s=0,±1,±2,...),
where

{

n, j, k : xn,xk,xj ∈ XNN
n

}

, δxn =
{

δxn, δxn−τ , . . . , δxn−(d−1)τ

}

and
{

n : xn ∈ XNN
n

}

.

Now the cost problem (22) can be transformed to the
form

S̃NN
n =

∑

s

(δxs)
2

+ λm
n Gd

m

(

XNN
n

)

= min

(∀n=1,...,N , ∀m=1,...,d)

and
{

s : xs ∈ XNN
n or xs ∈ Xn+1

}

. (A7)

Finding zeros of partial derivatives of the functional (A7)
one can linearize this problem and write it in the form
similar to the Eq. (23)

Mn · δXλ
n = Bn (∀n=1,...,N ). (A8)

Vectors δXλ
n and Bn occurring in Eq. (A8) are equal to

(

δXλ
n

)T
= {δxn−(d−1)τ , δxn−(d−2)τ , . . .

. . . , δxn, δxn+1, λ
1
n, λ2

n, . . . , λd
n}, (A9)

BT
n = {0, 0, . . . , 0,−Gd

1

(

XNN
n

)

,−Gd
2

(

XNN
n

)

, . . .

. . . ,−Gd
d

(

XNN
n

)

}(A10)
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where the number of zeros d0 appearing in BT
n depends

on the values of τ and d and for the case τ = 1, d0 = d+1.
Elements of the matrix Mn can be written as

[Mn]mm = 2 (∀m=1,...,d0
)

[Mn]lm = [Mn]ml + =

d
∑

s=1

ams (xk+1 − xj+1) (∀m=d0+1,...,d0+d+1) and {l : xl ∈ xn}

[Mn]lm = [Mn]ml + =

d
∑

s=1

ams (xj+1 − xn+1) (∀m=d0+1,...,d0+d+1) and {l : xl ∈ xk}

[Mn]lm = [Mn]ml + =
d
∑

s=1

ams (xn+1 − xk+1) (∀m=d0+1,...,d0+d+1) and {l : xl ∈ xj} (A11)

[Mn]lm = [Mn]ml + =
d
∑

s=1

ams (xj−mτ − xk−mτ ) (∀m=d0+1,...,d0+d+1) and {l : xl ∈ xn+1}

[Mn]lm = [Mn]ml + =

d
∑

s=1

ams (xn−mτ − xj−mτ ) (∀m=d0+1,...,d0+d+1) and {l : xl ∈ xk+1}

[Mn]lm = [Mn]ml + =

d
∑

s=1

ams (xk−mτ − xn−mτ ) (∀m=d0+1,...,d0+d+1) and {l : xl ∈ xj+1}

where the remaining Mn elements vanish and xl ∈ xn

means that the variable xl is a component of the xn vec-
tor.

The operator + = in (A11) has the same meaning as
in the programming language C++, i.e. if elements of

the matrix [Mn]ml occur in a few places (e.g. : xn ∈
xn and xn ∈ xn+1 ∀d>1,∨τ=1) then the elements at
the rhs of such equations have to be summed up.
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